Pii: S0031-3203(01)00172-8

نویسندگان

  • Benoit Huet
  • Edwin R. Hancock
چکیده

This paper presents a probabilistic similarity measure for object recognition from large libraries of line-patterns. We commence from a structural pattern representation which uses a nearest neighbour graph to establish the adjacency of line-segments. Associated with each pair of line-segments connected in this way is a vector of Euclidean invariant relative angle and distance ratio attributes. The relational similarity measure uses robust error kernels to compare sets of pairwise attributes on the edges of a nearest neighbour graph. We use the relational similarity measure in a series of recognition experiments which involve a library of over 2500 line-patterns. A sensitivity study reveals that the method is capable of delivering a recognition accuracy of 94%. A comparative study reveals that the method is most e2ective when either a Gaussian kernel or Huber’s robust kernel is used to weight the attribute relations. Moreover, the method consistently outperforms the standard and the quantile Hausdor2 distance. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affine invariant detection of perceptually parallel 3D planar curves

The problem of parallelism detection between two curves has been formulated in this paper as a line detection problem within an azne-invariant local similarity matrix computed for the two curves. Each element of this matrix gives an a$ne invariant measure of local parallelism for any pair of curve segments along the two curves. This approach enables the detection of a pair of parallel 3D planar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002